If $P = \frac{{{A^3}}}{{{B^{5/2}}}}$ and $\Delta A$ is absolute error in $A$ and $\Delta B$ is absolute error in $B$ then absolute error $\Delta P$ in $P$ is
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{A} + \frac{5}{2}\frac{{\Delta B}}{B}} \right)P$
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{A} + \frac{5}{2}\frac{{\Delta B}}{B}} \right)$
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{A} - \frac{5}{2}\frac{{\Delta B}}{B}} \right)P$
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{B} - \frac{5}{2}\frac{{\Delta B}}{A}} \right)P$
The maximum error in the measurement of resistance, current and time for which current flows in an electrical circuit are $1 \%, 2 \%$ and $3 \%$ respectively. The maximum percentage error in the detection of the dissipated heat will be
Two resistances are given as $R _1=(10 \pm 0.5)\,\Omega$ and $R_2=(15 \pm 0.5)\, \Omega$. The percentage error in the measurement of equivalent resistance when they are connected in parallel is
The mass of the body is $10.000\,g$ and its volume is $10.00\,cm^3$. If the measured values are expressed upto the correct significant figures, the maximum error in the measurement of density is
A physical quantity $X$ is given by $X = \frac{{2{k^3}{l^2}}}{{m\sqrt n }}$ The percentage error in the measurements of $k,\,l,\, m$ and $n$ are $1\%, 2\%, 3\%$ and $4\%$ respectively. The value of $X$ is uncertain by .......... $\%$
What is called as relative error ? Define fractional error.