If $P = \frac{{{A^3}}}{{{B^{5/2}}}}$ and $\Delta A$ is absolute error in $A$ and $\Delta B$ is absolute error in $B$ then absolute error $\Delta P$ in $P$ is

  • A

    $\Delta P =  \pm \left( { 3 \frac{{\Delta A}}{A} + \frac{5}{2}\frac{{\Delta B}}{B}} \right)P$

  • B

    $\Delta P =  \pm \left( { 3 \frac{{\Delta A}}{A} + \frac{5}{2}\frac{{\Delta B}}{B}} \right)$

  • C

    $\Delta P =  \pm \left( { 3 \frac{{\Delta A}}{A} - \frac{5}{2}\frac{{\Delta B}}{B}} \right)P$

  • D

    $\Delta P =  \pm \left( { 3 \frac{{\Delta A}}{B} - \frac{5}{2}\frac{{\Delta B}}{A}} \right)P$

Similar Questions

A metal wire has mass $(0.4 \pm 0.002)\,g$, radius $(0.3 \pm 0.001)\,mm$ and length $(5 \pm 0.02) \,cm$. The maximum possible percentage error in the measurement of density will nearly be $.......\%$

  • [NEET 2023]

The current voltage relation of diode is given by $I=(e^{1000V/T} -1)\;mA$, where the applied voltage $V$ is in volts and the temperature $T$ is in degree Kelvin. If a student makes an error measuring $ \mp 0.01\;V$ while measuring the current of $5\; mA$ at $300\; K$, what will be the error in the value of current in $mA$ ?

In an experiment four quantities $a, b, c$ and $d$ are measured with percentage error $1\%, 2\%, 3\%$ and $4\%$ respectively. Quantity $w$ is calculated as follows $w\, = \,\frac{{{a^4}{b^3}}}{{{c^2}\sqrt D }}$  error in the measurement of $w$ is .......... $\%$

Two clocks are being tested against a standard clock located in a national laboratory. At $12: 00: 00$ noon by the standard clock, the readings of the two clocks are 

$\begin{array}{ccc} & \text {Clock} 1 & \text {Clock} 2 \\ \text { Monday } & 12: 00: 05 & 10: 15: 06 \\ \text { Tuesday } & 12: 01: 15 & 10: 14: 59 \\ \text { Wednesday } & 11: 59: 08 & 10: 15: 18 \\ \text { Thursday } & 12: 01: 50 & 10: 15: 07 \\ \text { Friday } & 11: 59: 15 & 10: 14: 53 \\ \text { Saturday } & 12: 01: 30 & 10: 15: 24 \\ \text { Sunday } & 12: 01: 19 & 10: 15: 11\end{array}$

If you are doing an experiment that requires precision time interval measurements, which of the two clocks will you prefer?

The least count of a stop watch is $\frac{1}{5}$ second. The time of $20$ oscillations of a pendulum is measured to be $25$ seconds. The maximum percentage error ig the measurement of time will be ..... $\%$